题目内容
【题目】已知倾斜角60°为的直线l平分圆:x2+y2+2x+4y﹣4=0,则直线l的方程为( )
A. x﹣y+ +2=0
B. x+y+ +2=0
C. x﹣y+ ﹣2=0
D. x﹣y﹣ +2=0
【答案】C
【解析】解:倾斜角60°的直线方程,设为y= x+b.
圆:x2+y2+2x+4y﹣4=0化为(x+1)2+(y+2)2=9,圆心坐标(﹣1,﹣2).
因为直线平分圆,圆心在直线y= x+b上,所以﹣2=﹣ +b,解得b= ﹣2,
故所求直线方程为 x﹣y+ ﹣2=0.
故选C.
【考点精析】掌握直线与圆的三种位置关系是解答本题的根本,需要知道直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.
练习册系列答案
相关题目