ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¹ý×ó½¹µãF1£¨-1£¬0£©µÄÖ±ÏßÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒ¡÷F2MNµÄÖܳ¤Îª8£»¹ýµãP£¨4£¬0£©ÇÒ²»ÓëxÖá´¹Ö±µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Çó$\overrightarrow{OA}$•$\overrightarrow{OB}$µÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÈôBµã¹ØÓÚxÖáµÄ¶Ô³ÆµãÊÇE£¬Ö¤Ã÷£ºÖ±ÏßAEÓëxÖáÏཻÓÚ¶¨µã£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃc=1£¬ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ4a=8£¬¿ÉµÃa=2£¬ÓÉa£¬b£¬cµÄ¹Øϵ¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßPBµÄ·½³ÌΪy=k£¨x-4£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¼°ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬Óɲ»µÈʽµÄÐÔÖÊ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨¢ó£©ÇóµÃEµÄ×ø±ê£¬ÒÔ¼°Ö±ÏßAEµÄ·½³Ì£¬Áîy=0£¬ÔËÓÃΤ´ï¶¨Àí£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ËùÇ󶨵㣮
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃc=1£¬
¡÷F2MNµÄÖܳ¤Îª8£¬ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ4a=8£¬¿ÉµÃa=2£¬
¼´ÓÐb=$\sqrt{4-1}$=$\sqrt{3}$£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨¢ò£©½â£ºÓÉÌâÒâÖªÖ±ÏßABµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPBµÄ·½³ÌΪy=k£¨x-4£©£¬
ÓÉ´úÈëÍÖÔ²µÄ·½³ÌµÃ£º£¨3+4k2£©x2-32k2x+64k2-12=0
ÓÉ¡÷=£¨-32k2£©2-4£¨4k2+3£©£¨64k2-12£©£¾0µÃ£ºk2£¼$\frac{1}{4}$£¬
ÉèA£¨x1£¬y1£©£¬B £¨x2£¬y2£©£¬
Ôòx1+x2=$\frac{32{k}^{2}}{3+4{k}^{2}}$£¬x1x2=$\frac{64{k}^{2}-12}{3+4{k}^{2}}$¢Ù£¬
¡ày1y2=k2£¨x1-4£©£¨x2-4£©=k2x1x2-4k2£¨x1+x2£©+16k2£¬
¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=£¨1+k2£©•$\frac{64{k}^{2}-12}{3+4{k}^{2}}$-4k2•$\frac{32{k}^{2}}{3+4{k}^{2}}$+16k2=25-$\frac{87}{3+4{k}^{2}}$£¬
¡ß0¡Ük2£¼$\frac{1}{4}$£¬¡à-29¡Ü-$\frac{87}{3+4{k}^{2}}$£¼-$\frac{87}{4}$£¬¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$¡Ê[-4£¬$\frac{13}{4}$£©£¬
¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$µÄÈ¡Öµ·¶Î§ÊÇ[-4£¬$\frac{13}{4}$£©£®
£¨¢ó£©Ö¤Ã÷£º¡ßB¡¢EÁ½µã¹ØÓÚxÖá¶Ô³Æ£¬¡àE£¨x2£¬-y2£©£¬
Ö±ÏßAEµÄ·½³ÌΪy-y1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}-{x}_{2}}$£¨x-x1£©£¬Áîy=0µÃ£ºx=x1-$\frac{{y}_{1}£¨{x}_{1}-{x}_{2}£©}{{y}_{1}+{y}_{2}}$£¬
ÓÖy1=k£¨x1-4£©£¬y2=k£¨x2-4£©£¬¡àx=$\frac{2{x}_{1}{x}_{2}-4£¨{x}_{1}+{x}_{2}£©}{{x}_{1}+{x}_{2}-8}$£¬
Óɽ«¢Ù´úÈëµÃ£ºx=1£¬
¡àÖ±ÏßAEÓëxÖá½»ÓÚ¶¨µã£¨1£¬0£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄ¶¨Ò壬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{1}{3}$£¼a¡Ü$\frac{1}{2}$ | B£® | $\frac{1}{3}$¡Üa£¼$\frac{1}{2}$ | ||
C£® | $\frac{1}{3}$£¼a¡Ü$\frac{1}{2}$»ò-$\frac{1}{2}$¡Üa£¼-$\frac{1}{3}$ | D£® | $\frac{1}{3}$¡Üa£¼$\frac{1}{2}$»ò-$\frac{1}{2}$£¼a¡Ü-$\frac{1}{3}$ |
A£® | $\frac{{\sqrt{3}}}{2}$ | B£® | $\frac{{\sqrt{3}}}{3}$ | C£® | $\frac{{2\sqrt{3}}}{3}$ | D£® | $\frac{1}{2}$ |