ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªÃüÌâp£ºÅ×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µãFÔÚÍÖÔ²$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1ÉÏ£®ÃüÌâq£ºÖ±Ïßl¾¹ýÅ×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µãF£¬ÇÒÖ±Ïßl¹ýÍÖÔ²$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1µÄ×ó½¹µãF1£®p¡ÄqÊÇÕæÃüÌ⣮£¨¢ñ£©ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ò£©Ö±ÏßlÓëÅ×ÎïÏßÏཻÓÚA¡¢B£¬Ö±Ïßl1¡¢l2·Ö±ðÇÐÅ×ÎïÏßÓÚA¡¢B£¬Çól1¡¢l2µÄ½»µãPµÄ×ø±ê£®
·ÖÎö £¨¢ñ£©Í¨¹ý½«Å×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µãF£¨0£¬1£©´úÈëÍÖÔ²$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1µÃb=1£¬½ø¶øÍÖÔ²µÄ×ó½¹µãÊÇF1£¨-1£¬0£©£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨¢ò£©²»·Á¼Ù¶¨µãAÔÚµÚ¶þÏóÏÞ£¬Í¨¹ýÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì¿ÉÖªA¡¢Bµã×ø±ê£¬ÀûÓöÔÅ×ÎïÏß·½³ÌÇ󵼿É֪бÂÊ£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µãΪF£¨0£¬1£©£¬¡£¨1·Ö£©
¡ßp¡ÄqÊÇÕæÃüÌ⣬
¡à½«F£¨0£¬1£©´úÈëÍÖÔ²$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1µÃ£ºb=1£® ¡£¨2·Ö£©
¡àÍÖÔ²·½³ÌÊÇ$\frac{{x}^{2}}{2}$+y2=1£¬ËüµÄ×ó½¹µãÊÇF1£¨-1£¬0£©£® ¡£¨3·Ö£©
¡àÖ±ÏßlµÄ·½³ÌÊÇ£ºy=x+1£® ¡£¨5·Ö£©
£¨¢ò£©²»·Á¼Ù¶¨µãAÔÚµÚ¶þÏóÏÞ£¬
ÓÉ·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}}\\{y=x+1}\end{array}\right.$µÃ£ºA£¨2-$2\sqrt{2}$£¬3-$2\sqrt{2}$£©£¬B£¨2+$2\sqrt{2}$£¬3+$2\sqrt{2}$£©£® ¡£¨7·Ö£©
ÓÉy=$\frac{1}{4}$x2µÃ£¬y¡ä=$\frac{1}{2}$x£¬
ËùÒÔÖ±Ïßl1¡¢l2µÄбÂÊ·Ö±ðÊÇ1-$\sqrt{2}$¡¢1+$\sqrt{2}$£¬¡£¨9·Ö£©
¡àÖ±Ïßl1£ºy-£¨3-$2\sqrt{2}$£©=£¨1-$\sqrt{2}$£©£¨x-2+$2\sqrt{2}$£©¡¢
Ö±Ïßl2£ºy-£¨3+$2\sqrt{2}$£©=£¨1+$\sqrt{2}$£©£¨x-2-$2\sqrt{2}$£©£® ¡£¨10·Ö£©
½âÁ½¸ö·½³Ì¹¹³ÉµÄ·½³Ì×éµÃP£¨2£¬-1£©£® ¡£¨12·Ö£©
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÖ±Ïß·½³Ì¡¢Ö±Ïß½»µã×ø±ê£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | a£¾b£¾$\frac{a+b}{2}$£¾$\sqrt{ab}$ | B£® | a£¾$\frac{a+b}{2}$£¾$\sqrt{ab}$£¾b | C£® | a£¾$\frac{a+b}{2}$£¾b£¾$\sqrt{ab}$ | D£® | a£¾$\frac{a+b}{2}$¡Ý$\sqrt{ab}$£¾b |