题目内容
已知数列{an}:1,
+
,
+
+
,…,
+
+…+
,…
(1)观察规律,写出数列{an}的通项公式,它是个什么数列?
(2)若bn=
(n∈N*),设Sn=b1+b2+…+bn,求Sn.
(3)设cn=
an,Tn为数列{cn}的前n项和,求Tn.
1 |
2 |
2 |
2 |
1 |
3 |
2 |
3 |
3 |
3 |
1 |
100 |
2 |
100 |
100 |
100 |
(1)观察规律,写出数列{an}的通项公式,它是个什么数列?
(2)若bn=
1 |
anan+1 |
(3)设cn=
1 |
2n |
分析:(1)由数列{an}:1,
+
,
+
+
,…,
+
+…+
,…可知:an=
=
=
.判断an+1-an是否是一个常数即可.
(2)bn=
=4(
-
).利用“裂项求和”即可得出Sn.
(3)由(1)可得cn=
.利用“错位相减法”即可得出.
1 |
2 |
2 |
2 |
1 |
3 |
2 |
3 |
3 |
3 |
1 |
100 |
2 |
100 |
100 |
100 |
1+2+3+…+n |
n |
| ||
n |
n+1 |
2 |
(2)bn=
1 | ||||
|
1 |
n+1 |
1 |
n+2 |
(3)由(1)可得cn=
n+1 |
2n+1 |
解答:解:(1)由数列{an}:1,
+
,
+
+
,…,
+
+…+
,…可知:an=
=
=
.
∴an+1=
,
∴an+1-an=
-
=
(n≥1),
因此数列{an}是以1为首项,
为公差的等差数列.
(2)bn=
=4(
-
).
∴Sn=4[(
-
)+(
-
)+…+(
-
)]=4(
-
)=
.
(3)cn=
.
∴Tn=2×
+3×
+…+n×
+(n+1)×
,
2Tn=2×
+3×
+…+(n+1)×
,
∴Tn=1+
+
+…+
-(n+1)×
=
+
-(n+1)×
=
-
.
1 |
2 |
2 |
2 |
1 |
3 |
2 |
3 |
3 |
3 |
1 |
100 |
2 |
100 |
100 |
100 |
1+2+3+…+n |
n |
| ||
n |
n+1 |
2 |
∴an+1=
n+2 |
2 |
∴an+1-an=
n+2 |
2 |
n+1 |
2 |
1 |
2 |
因此数列{an}是以1为首项,
1 |
2 |
(2)bn=
1 | ||||
|
1 |
n+1 |
1 |
n+2 |
∴Sn=4[(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+2 |
2n |
n+2 |
(3)cn=
n+1 |
2n+1 |
∴Tn=2×
1 |
22 |
1 |
23 |
1 |
2n |
1 |
2n+1 |
2Tn=2×
1 |
2 |
1 |
22 |
1 |
2n |
∴Tn=1+
1 |
22 |
1 |
23 |
1 |
2n |
1 |
2n+1 |
1 |
2 |
| ||||
1-
|
1 |
2n+1 |
3 |
2 |
n+3 |
2n+1 |
点评:本题考查了等差数列的定义和前n项和公式、“裂项求和”、“错位相减法”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目