题目内容
(2011•通州区一模)已知数列{an}:1,1+
,1+
+
,1+
+
+
,…,1+
+
+…+
,….
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;
(II)设bn=
,求数列{bn}的前n项和Tn.
1 |
2 |
1 |
3 |
2 |
3 |
1 |
4 |
2 |
4 |
3 |
4 |
1 |
n |
2 |
n |
n-1 |
n |
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;
(II)设bn=
n |
(an+1-an)n |
分析:(I)依题意,可求得an+1-an为定值,利用定义判断即可;
(II)由(Ⅰ),结合题意可求得bn=n•2n,利用错位相减法即可求得数列{bn}的前n项和Tn.
(II)由(Ⅰ),结合题意可求得bn=n•2n,利用错位相减法即可求得数列{bn}的前n项和Tn.
解答:解:(I)∵an=1+
+
+…+
=1+
=
,
∴an+1-an=
-
=
,又a1=1,
∴数列{an}是以1为首项,
为公差的等差数列;
(II)∵bn=
=
=n•2n,
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=
-n•2n+1
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
1 |
n |
2 |
n |
n-1 |
n |
(
| ||||
2 |
n+1 |
2 |
∴an+1-an=
(n+1)+1 |
2 |
n+1 |
2 |
1 |
2 |
∴数列{an}是以1为首项,
1 |
2 |
(II)∵bn=
n |
(an+1-an)n |
n | ||
(
|
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=
2(1-2n) |
1-2 |
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
点评:本题考查等差关系的确定,考查数列的求和,突出考查错位相减法在解决由等差数列与等比数列的对应项之积构成的数列求和中的作用,属于中档题.
练习册系列答案
相关题目