题目内容
【题目】函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是 .
【答案】y=x2
【解析】函数y=x2导数的为y′=2x , 函数y=xlnxd的导数为 y′=lnx+1,
当x足够大时,2x 远大于 lnx+1,
∴幂函数的增长速度远大于对数函数的增长速度,
故函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是函数 y=x2 .
练习册系列答案
相关题目
【题目】若函数f(x)=x3+x2+2x﹣2的一个正数零点附近的函数值用二分法计算,其参考数据
f (1)=﹣2 | f (1.5)=0.625 | f (1.25)=﹣0.984 |
f (1.375)=﹣0.260 | f (1.4375)=0.162 | f (1.40625)=﹣0.054 |
如下:那么方程x3+x2+2x﹣2的一个近似根(精确到0.1)为 .