题目内容
设M=10a2+81a+207,P=a+2,Q=26-2a;若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(1)试比较M、P、Q的大小;
(2)求a的值及{an}的通项;
(3)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设Tn=
(b1b2+b2b3+…+bn-1bn)(n≥2),求Tn,并证明T2T3T4…Tn>
.
(1)试比较M、P、Q的大小;
(2)求a的值及{an}的通项;
(3)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设Tn=
1 |
4 |
2n-1 |
n |
(1)由
,得-2<a<13,
∵M-Q=10a2+83a+181>0(∵△1<0),M-P=10a2+80a+205>0(∵△2<0),∴M>Q,M>P,
又∵当-2<a<13时,P-Q=-24+3a,
则当-2<a<8时,P<Q,此时P<Q<M,
当a=8时,P=Q,此时P=Q<M,
当8<a<13时,P>Q,此时Q<P<M;
(2)由(1)知,当-2<a<8时,
即
,∴
,
解得a=
,从而an=lgP+(n-1)×1=n-2lg2;
当8<a<13时,
即
,∴
,a无解.
综上,a=
,an=n-2lg2;
(3)设f(x)与x轴交点为(x1,0),(x2,0),
∵2an+1=an+an+2,∴-1为f(x)的一个零点,
∴当f(x)=0时有(x+1)(anx+an+2)=0,∴x1=-1, x2=-
=-
,
∴bn=|x1-x2|=|-1+
|=
,
又∵an=n-2lg2>0,∴bn=
,
∴bn-1bn=
×
=4(
-
),
∴Tn=
×4[(
-
)+(
-
)+…+(
-
)]=
-
=
-
=
,
又Tn=
>
=
,
∴T2T3T4…Tn>
•
•
•
…
=
.
|
∵M-Q=10a2+83a+181>0(∵△1<0),M-P=10a2+80a+205>0(∵△2<0),∴M>Q,M>P,
又∵当-2<a<13时,P-Q=-24+3a,
则当-2<a<8时,P<Q,此时P<Q<M,
当a=8时,P=Q,此时P=Q<M,
当8<a<13时,P>Q,此时Q<P<M;
(2)由(1)知,当-2<a<8时,
|
|
|
解得a=
1 |
2 |
当8<a<13时,
|
|
|
综上,a=
1 |
2 |
(3)设f(x)与x轴交点为(x1,0),(x2,0),
∵2an+1=an+an+2,∴-1为f(x)的一个零点,
∴当f(x)=0时有(x+1)(anx+an+2)=0,∴x1=-1, x2=-
an+2 |
an |
an+2 |
an |
∴bn=|x1-x2|=|-1+
an+2 |
an |
2 |
|an| |
又∵an=n-2lg2>0,∴bn=
2 |
an |
∴bn-1bn=
2 |
an-1 |
2 |
an |
1 |
an-1 |
1 |
an |
∴Tn=
1 |
4 |
1 |
a1 |
1 |
a2 |
1 |
a2 |
1 |
a3 |
1 |
an-1 |
1 |
an |
1 |
a1 |
1 |
an |
1 |
1-2lg2 |
1 |
n-2lg2 |
n-1 |
(1-2lg2)(n-2lg2) |
又Tn=
n-1 |
(1-2lg2)(n-2lg2) |
n-1 | ||
|
2(n-1) |
n |
∴T2T3T4…Tn>
2 |
2 |
2•2 |
3 |
2•3 |
4 |
2•4 |
5 |
2(n-1) |
n |
2n-1 |
n |
练习册系列答案
相关题目