题目内容

【题目】某中学长期坚持贯彻以人为本,因材施教的教育理念,每年都会在校文化节期间举行“数学素养能力测试”和“语文素养能力测试”两项测试,以给学生课外兴趣学习及辅导提供参考依据.成绩分为五个等级(等级分别对应5分,4分,3分,2分,1分).某班学生两科的考试成绩的数据统计如图所示,其中“语文素养能力测试”科目的成绩为的考生有3人.

1)求该班“数学素养能力测试”的科目平均分以及“数学素养能力测试”科目成绩为的人数;

2)若该班共有9人得分大于7分,其中有210分,39分,48分.从这9人中随机抽取三人,设三人的成绩之和为,求

3)从该班得分大于7分的9人中选3人即甲,乙,丙组队参加学校内的“数学限时解题挑战赛”.规则为:每队首先派一名队员参加挑战赛,在限定的时间,若该生解决问题,即团队挑战成功,结束挑战;若解决问题失败,则派另外一名队员上去挑战,直至派完队员为止.通过训练,已知甲,乙,丙通过挑战赛的概率分别是,问以怎样的先后顺序派出队员,可使得派出队员数目的均值达到最小?(只需写出结果)

【答案】1)2.575,4;(2;(3)乙,甲,丙.

【解析】

1)根据频率分布直方图,直接求加权平均数,再根据语文素养能力测试为的频率和人数得出总人数,再根据“数学素养能力测试”科目的频率即可得解.

1)由图可知,数学素养能力测试为的频率为0.1,故该班“数学素养能力测试”的科目平均分为

语文素养能力测试为的频率为0.075,故而该班有人.“数学素养能力测试”科目成绩为的人数(人).

2)依题:的取值可为292827262524

3)乙,甲,丙.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网