题目内容
设函数 条件:“”;条件:“为奇函数”,则是的( ).
A.充要条件 | B.充分不必要条件 |
C.必要不充分条件 | D.既不充分也不必要条件 |
B.
解析试题分析:“充分性”:当,有,得,则,此函数满足可知为奇函数,所以充分性成立;“必要性:”当为奇函数时,有
,此时,当时,或不存在,所以必要性不成立.综上所述,是的充分不必要条件.
考点:充要条件的判定,奇函数的定义,正切函数的性质.
练习册系列答案
相关题目
“”是“”的( )
A.充分条件 | B.充分而不必要条件 |
C.必要而不充分条件 | D.既不充分也不必要条件 |
.2x2-5x-3<0的一个必要不充分条件是
A.-<x<3 | B.-<x<0 |
C.-3<x< | D.-1<x<6 |
以下有关命题的说法错误的是( )
A.命题“若则x=1”的逆否命题为“若” |
B.“”是“”的充分不必要条件 |
C.若为假命题,则p、q均为假命题 |
D.对于命题 |
下列命题中,真命题的个数有( )
①;
②;
③“”是“”的充要条件;
④是奇函数.
A.1个 | B.2个 | C.3个 | D.4个 |
下列说法:
(1)命题“,使得”的否定是“,使得”
(2)命题“函数在处有极值,则”的否命题是真命题
(3)是(,0)∪(0,)上的奇函数,时的解析式是,则 的解析式为
其中正确的说法的个数是( ).
A.0个 | B.1个 | C.2个 | D.3个 |
不等式与同时成立的充要条件为( )
A. | B. | C. | D. |