题目内容
(本小题满分14分)已知函数
,
是常数.
(Ⅰ) 证明曲线
在点
的切线经过
轴上一个定点;
(Ⅱ) 若
对
恒成立,求
的取值范围;
(参考公式:
)
(Ⅲ)讨论函数
的单调区间.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242495945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242510283.png)
(Ⅰ) 证明曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242557561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242573570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242697310.png)
(Ⅱ) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242775801.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242791669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242510283.png)
(参考公式:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202428531088.png)
(Ⅲ)讨论函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242869447.png)
(1)
;(2)
;(3)单调增区间是
和
,单调减区间是
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242916495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242931634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242947506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242978577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242994452.png)
(1)利用导数求出斜率,然后写出点斜式方程
,从而可看出当x=0时,切线经过y轴上的定点(0,-8).
(II)由
得
……5分,
对
,
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202431341782.png)
,然后再构造函数
,利用导数研究其最小值即可.
(III)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243197899.png)
=
,然后再对
和
两种情况进行讨论。
解:⑴
,
,……1分
……2分,
曲线
在点
的切线为
……3分,
当
时,由切线方程得
,所以切线经过
轴上的定点
……4分.
⑵由
得
……5分,
对
,
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202439141873.png)
……6分,
设
,则
……7分,
在区间
单调递减……8分,
所以
,
的取值范围为
……9分.
⑶函数
的定义域为
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243197899.png)
=
……10分.
若
,则
,
在定义域
上单调增加……11分;
若
,解方程
得
,
……12分,
,当
或
时,
;
当
时,
……13分,
所以
的单调增区间是
和
,单调减区间是
(区间无论包含端点
、
均可,但要前后一致)……14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243025975.png)
(II)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242775801.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202430721483.png)
对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242791669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243103506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202431341782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243150874.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202431651041.png)
(III)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243197899.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202432121036.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243228431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243259422.png)
解:⑴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243275649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243197899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243493695.png)
曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242557561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242573570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243025975.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243602365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243633449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242697310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242916495.png)
⑵由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242775801.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202430721483.png)
对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242791669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243103506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202439141873.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243150874.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202431651041.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243977984.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243992442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244023487.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244039778.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242510283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242931634.png)
⑶函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242495945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244242526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243197899.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202432121036.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243228431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244429592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242869447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244242526.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220243259422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244632965.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202446631045.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232202448351060.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244850507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244866375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244881439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244897591.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244928476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220244959585.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242869447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242947506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242978577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220242994452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220245256299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220245271334.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目