题目内容

已知非零向量
AB
AC
满足(
AB
|
AB|
+
AC
|
AC|
)•
BC
=0,且
AB
|
AB|
AC
|
AC|
=-
1
2
,则△ABC为(  )
A、等腰非等边三角形
B、等边三角形
C、三边均不相等的三角形
D、直角三角形
分析:利用单位向量的定义及向量的数量积为0两向量垂直,得到等腰三角形;利用向量的数量积求出三角形的夹角,得到非等边三角形.
解答:解:
AB
|
AB|
AC
|
AC|
分别是
AB
AC
方向的单位向量,
向量
AB
|
AB|
+
AC
|
AC|
在∠BAC的平分线上,
由(
AB
|
AB|
+
AC
|
AC|
)•
BC
=0知,AB=AC,
AB
|
AB|
AC
|
AC|
=-
1
2
,可得∠CAB=120°,
∴△ABC为等腰非等边三角形,
故选A.
点评:本题考查单位向量的定义;向量垂直的充要条件;向量数量积的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网