题目内容
(本小题满分12分)
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
解:(Ⅰ)当时,,则。
依题意得:,即 解得 ………4分
(Ⅱ)由(Ⅰ)知,
①当时,,
令得
当变化时,的变化情况如下表:
|
| 0 |
|
|
|
| — | 0 | + | 0 | — |
| 单调递减 | 极小值 | 单调递增 | 极大值 | 单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。……8分
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)
若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上。……………12分
练习册系列答案
相关题目