题目内容

已知n次多项式Pn(x)=a0xn+a1xn-1+…+an-1x+an.

    如果在一种运算中,计算x0k(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算Pn(x0)的值共需___________次运算.

    下面给出一种减法运算:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需6次运算,计算Pn(x0)的值共需__________-次运算.

解析:∵Pn(x)=a0xn+a1xn-1+…+an-1x+an,a0xn需算n次乘法,akxn-k需算n-k次乘法,

∴Pn(x0)共需n+(n-1)+(n-2)+…+1+0=次乘法.

∵Pn(x0)共有n+1项,∴共需(n+1)-1次加法.

∴Pn(x0)共需计算+(n+1)-1=+n次.

∵Pk+1(x)=xPk(x)+ak+1,设Pk(x)共需算Pk次,

∴x·Pk(x)共需算Pk+1次,

xPk(x)+ak+1共需算Pk+2次.

∴Pk+1=Pk+2.

∴{Pk}是首项为P1,公差为2的等差数列,P1=P0+2=2.

∴Pn=2+(n-2)×2=2n.

答案:+   2n


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网