ÌâÄ¿ÄÚÈÝ
ÒÑÖªn´Î¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+an£®Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡£¬n£©µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0£¨x0£©=a0£®Pn+1£¨x£©=xPn£¨x£©+ak+1£¨k=0£¬l£¬2£¬¡£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
·ÖÎö£º±¾Ì⿼²éµÄ֪ʶµãÊÇËã·¨°¸ÀýÖеÄÇؾÅÉØËã·¨£¬¸ù¾Ý³£¹æÔËËãµÄËã·¨¹æÔò£¬ºÍÇؾÅÉØËã·¨µÄËã·¨¹æÔò£¬ÎÒÃDz»Äѵõ½½áÂÛ£®
½â´ð£º½â£ºÔÚÀûÓó£¹æËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+anµÄֵʱ£¬
Ëãa0xnÏîÐèÒªn³Ë·¨£¬ÔòÔÚ¼ÆËãʱ¹²ÐèÒª³Ë·¨£ºn+£¨n-1£©+£¨n-2£©+¡+2+1=
´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
n£¨n+3£©´ÎÔËË㣮
ÔÚʹÓÃÇؾÅÉØËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+anµÄֵʱ£¬
¹²ÐèÒª³Ë·¨£ºn´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª2nË㣮
¹Ê´ð°¸Îª£º
n£¨n+3£©£¬2n
Ëãa0xnÏîÐèÒªn³Ë·¨£¬ÔòÔÚ¼ÆËãʱ¹²ÐèÒª³Ë·¨£ºn+£¨n-1£©+£¨n-2£©+¡+2+1=
n(n+1) |
2 |
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
1 |
2 |
ÔÚʹÓÃÇؾÅÉØËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+anµÄֵʱ£¬
¹²ÐèÒª³Ë·¨£ºn´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª2nË㣮
¹Ê´ð°¸Îª£º
1 |
2 |
µãÆÀ£ºÕâÊÇÒ»µÀÐÂÔËËãÀàµÄÌâÄ¿£¬ÆäÌصãÒ»°ãÊÇ¡°Ð¡±¶ø²»¡°ÄÑ¡±£¬´¦ÀíµÄ·½·¨Ò»°ãΪ£º¸ù¾ÝÐÂÔËËãµÄ¶¨Ò壬½«ÒÑÖªÖеÄÊý¾Ý´úÈë½øÐÐÔËË㣬Ò×µÃ×îÖÕ½á¹û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿