题目内容

若点P在直线l1:x+y+3=0上,过点P的直线l2与曲线C:(x-5)2+y2=16相切于点M,则|PM|的最小值为(  )
A、
2
B、2
C、2
2
D、4
分析:要使PM|最小,必须点P到圆心(5,0)的距离最小.点P到圆心(5,0)的距离最小值等于圆心到
直线l1:x+y+3=0 的距离:d,|PM|的最小值为  
d2-r2
解答:解:由题意得,要使PM|最小,必须点P到圆心(5,0)的距离最小.设点P(m,-m-3),
点P到圆心(5,0)的距离最小值等于圆心到直线l1:x+y+3=0 的距离:d=
|5+0+3|
2
=4
2

∴|PM|的最小值为  
d2-r2
=
32-16
=4,
故选 D.
点评:本题考查点到直线的距离公式的应用,体现了转化的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网