题目内容

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)
,最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数y=sin(2x+
π
3
)
图象所有的对称中心都在y=f(x)图象的对称轴上.
(1)求f(x)的表达式;
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,求cos(x0-
π
3
)
的值;
(3)设
a
=(f(x-
π
6
),1)
b
=(1,mcosx)
x∈(0,
π
2
)
,若
a
b
+3≥0
恒成立,求实数m的取值范围.
分析:(1)由已知中已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)
,最大值与最小值的差为4,相邻两个最低点之间距离为π,我们易计算出A值,及最小正周期,进而求出ω值,再由函数y=sin(2x+
π
3
)
图象所有的对称中心都在y=f(x)图象的对称轴上,求出φ值,即可得到f(x)的表达式;
(2)由f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,结合(1)中所求的函数解析式,可得cos(x0+
π
3
)=
3
4
,进而求出sin(x0+
π
3
)
的值,然后根据两角差的余弦公式,即可求出答案.
(3)由
a
=(f(x-
π
6
),1)
b
=(1,mcosx)
x∈(0,
π
2
)
a
b
+3≥0
恒成立,要以转化为函数恒成立问题,构造函数,求出其最值,即可得到答案.
解答:解:(1)依题意可知:A=2,T=π,y=sin(2x+
π
3
)
与f(x)相差
T
4
+kT,k∈Z
,即相差
π
4
+kπ,k∈Z

所以f(x)=Asin[2(x+
π
4
+kπ)+
π
3
]=Acos(2x+
π
3
)

f(x)=Asin[2(x-
π
4
+kπ)+
π
3
]=Acos(2x+
3
)
(舍),
f(x)=2cos(2x+
π
3
)

(2)因为f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,即cos(x0+
π
3
)=
3
4

因为x0+
π
3
∈[-
π
6
6
]
,又cos(-
π
6
)=
3
2
3
4
,y=cosx在[-
π
6
,0]
单调递增,
所以x0+
π
3
∈[0,
π
2
]

所以sin(x0+
π
3
)=
1-(
3
4
)
2
=
7
4
,于是
cos(x0-
π
3
)=cos(x0+
π
3
-
3
)=cos(x0+
π
3
)cos
3
+sin(x0+
π
3
)sin
3
=-
3
4
1
2
+
7
4
3
2
=
21
-3
8

(3)因为
a
=(f(x-
π
6
),1)
b
=(1,mcosx)
x∈(0,
π
2
)

a
b
+3=f(x-
π
6
)+mcosx+3=2cos2x+mcosx+3=4cos2x+mcosx+1

于是4cos2x+mcosx+1≥0,得m≥-4cosx-
1
cosx
对于x∈(0,
π
2
)
恒成立,
因为(-4cosx-
1
cosx
)max=-4

故m≥-4.
点评:本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,函数恒成立问题,其中根据已知条件,计算出函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)
的解析式是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网