题目内容

已知A,B为椭圆
x2
4
+
y2
3
=1
的左右两个顶点,F为椭圆的右焦点,P为椭圆上异于A、B点的任意一点,直线AP、BP分别交椭圆的右准线于M、N点,则△MFN面积的最小值是(  )
A、8B、9C、11D、12
分析:先设P(s,t),由题设条件得两直线PA,PB的方程,与准线方程联立,解出M,N两点的坐标,用s,t表示出线段MN的长度,再由点P在椭圆上,将点的坐标代入椭圆方程,用s表示出t,消去t,得到线段MN的长关于s的函数,又点F到准线的距离是3,由此MFN面积可表示为s的函数,由其形式知,可用判别式法求最小值
解答:解:设P(s,t),由题意直线PA的方程为
y
t
+
x-2
s+2
=1
,即,直线PB的方程为
y
t
+
x+2
s-2
=1

由于椭圆
x2
4
+
y2
3
=1
故a=2,b=
3
,c=1,故其右准线方程为x=
a2
c
=4,F(1,0),故F到准线的距离是3
∵直线AP、BP分别交椭圆的右准线于M、N点
∴M(4,
6
s+2
t
),N(4,
2
s-2
t

故有|MN|=|
6
s+2
t
-
2
s-2
t
|=|
4t(s-4)
s2-4
|
∴S2=
1
4
×|MN|2×9=
9
4
×|
4t(s-4)
s2-4
|①
又P(s,t)在椭圆上,故有t2=3-
s2
4
 代入①整理得S2=27×
(4-s)2
4-s2

令M2=
(4-s)2
4-s2
得(M2+1)s2-8s+16-4M2=0,此方程恒有根
故△=64-4(M2+1)(16-4M2)≥0
解得M2≥3,故M≥
3
或M≤-
3
(舍)
∴S2=27×
(4-s)2
4-s2
≥27×3
∴S≥9
故选B.
点评:本题主要考查了椭圆的标准方程和直线与椭圆的关系,考查了学生综合分析问题和解决问题的能力.解题的关键是根据意建立起面积关于坐标的函数,掌握用判别式法求值域也是本题的一个难点,解题时运算技巧很重要.本题运算量很大,要严谨,避免因运算失误导致解题失败.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网