题目内容
(本小题满分13分)
设为坐标原点,,
(1)若四边形是平行四边形,求的大小;
(2)在(1)的条件下,设中点为,与交于,求.
(1)(2)
解析试题分析:(1)有题意:由得
…………………………………………………………(3分)
所以
又
所以………………………………………..(6分)
(2)为中点,的坐标为
又由,故的坐标为……………………………………….(9分)
所以
因为三点共线,故………………………………………………(11分)
得,解得,从而…………….(13分)
考点:利用向量求直线夹角及点的坐标
点评:题中利用平行四边形的性质转化为向量关系,进而代入点的坐标进行计算,当遇到三点共线时,转化为三点确定的两向量共线
练习册系列答案
相关题目
下列向量中,与向量不共线的一个向量( )
A. | B. | C. | D. |