题目内容

20.已知点O(0,0),A(0,3),直线l:y=x+1,设圆C的半径为1,圆心在l上,若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为-1-$\frac{\sqrt{14}}{2}$≤a≤-1+$\frac{\sqrt{14}}{2}$.

分析 设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.

解答 解:设点M(x,y),由MA=2MO,化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,
∴1≤|CD|≤3,其中|CD|=$\sqrt{{a}^{2}+(a+2)^{2}}$,∴1≤$\sqrt{{a}^{2}+(a+2)^{2}}$≤3,
化简可得-1-$\frac{\sqrt{14}}{2}$≤a≤-1+$\frac{\sqrt{14}}{2}$,
故答案为:-1-$\frac{\sqrt{14}}{2}$≤a≤-1+$\frac{\sqrt{14}}{2}$.

点评 本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网