题目内容
【题目】如图,正方体的棱长为1,为的中点,在侧面上,有下列四个命题:
①若,则面积的最小值为;
②平面内存在与平行的直线;
③过作平面,使得棱,,在平面的正投影的长度相等,则这样的平面有4个;
④过作面与面平行,则正方体在面的正投影面积为.
则上述四个命题中,真命题的个数为( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
①建立空间坐标系,得到点应该满足的条件,再根据二次函数的最值的求法求解即可;对于②,平面,所以也与平面相交.故②错;对于③过作平面,使得棱,,在平面的正投影的长度相等,因为,且,所以在平面的正投影长度与在平面的正投影长度相等,然后分情况讨论即可得到平面的个数;对于④面与面平行,则正方体在面的正投影为正六边形,且正六边形的边长为正三角形外接圆的半径,故其面积为.
解:对于①,以为原点,为轴,为轴,为轴,建立空间直角坐标系,如图1所示;
过作平面,是垂足,过作,交于,连结,
则,,,,,,,
设,则,,
∵,
∴,解得,
∴,,
,
∴,
当时,,①正确;
对于,平面,所以也与平面相交.故②错;
③过作平面,使得棱,,在平面的正投影的长度相等,因为,且,故在平面的正投影的长度等于在平面的正投影的长度,使得棱,,在平面的正投影的长度相等,即使得使得棱,,面的正投影的长度相等,若棱,,面的同侧,则为过且与平面平行的平面,若棱,,中有一条棱和另外两条棱分别在平面的异侧,则这样的平面有3个,故满足使得棱,,在平面的正投影的长度相等的平面有4个;③正确.
④过作面与面平行,则正方体在面的正投影为一个正六边形,其中平面,而分别垂直于正三角形和,所以根据对称性,正方体的8个顶点中,在平面内的投影点重合与正六边形的中心,其它六个顶点投影恰是正六边形的六个顶点,且正六边形的边长等于正三角形的外接圆半径(投影线与正三角形、垂直),所以正六边形的边长为,所以投影的面积为.④对.
故选:C.
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若=10,求y与x的函数解析式;
(2)若要求“维修次数不大于”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.
附:若随机变量服从正态分布,则,,.
参考公式与临界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |