题目内容

(本小题满分12分)

         已知四棱锥的三视图如图所示,为正三角形.

         (Ⅰ)在平面中作一条与底面平行的直线,并说明理由;

         (Ⅱ)求证:平面

         (Ⅲ)求三棱锥的高.

 

【答案】

(Ⅰ)分别取中点,连结,则即为所求,下证之:·········· 1分

∵ 分别为中点,

∴ .················································ 2分

∵ 平面平面,··· 3分

∴ 平面.··································· 4分

(作法不唯一)

(Ⅱ)见解析;(Ⅲ) 

【解析】(I)在平面PCD内作一条与CD平行的直线即可.可以考虑作三角形PCD的中位线.

(II)由于PA垂直AC,所以只须证AC垂直AB即可.可以利用勾股定理进行证明.

(III)求三棱锥的高可以考虑其特殊性,采用换底的方法利用体积法求解是一条比较好的求解方法.本小题可以考虑利用进行求解.

(Ⅰ)分别取中点,连结,则即为所求,下证之:·········· 1分

∵ 分别为中点,

∴ .················································ 2分

∵ 平面平面,··· 3分

∴ 平面.··································· 4分

(作法不唯一)

(Ⅱ)由三视图可知,平面,四边形为直角梯形.

过点,则,

∴ ,

∴ ,故.······························································· 6分

∵ 平面,平面,

∴ .···································································································· 7分

∵ 

∴ 平面.······················································································· 8分

(Ⅲ)∵ 为正三角形,

∴ 

中,

∴ ,··································· 10分

(其中为三棱锥的高).

························································································································ 11分

∵ 

∴ .        12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网