题目内容
某篮球决赛在广东队与山东队之间进行,比赛采用7局4胜制,即若有一队先胜4场,则此队获胜,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛组织者可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元,则组织者在此次决赛中要获得的门票收入不少于390万元的概率为________.
依题意,每场比赛获得的门票收入数组成首项为40,公差为10的等差数列,设此数列为{an},则易知a1=40,an=10n+30,∴Sn==.由Sn≥390得n2+7n≥78,∴n≥6.∴若要获得的门票收入不少于390万元,则至少要比赛6场.①若比赛共进行了6场,则前5场比赛的比分必为2∶3,且第6场比赛为领先一场的球队获胜,其概率P(6)=×()5=;②若比赛共进行了7场,则前6场胜负为3∶3,其概率P(7)=×()6=.∴门票收入不少于390万元的概率P=P(6)+P(7)==.
练习册系列答案
相关题目