题目内容
14.已知定义在R上的函数f(x)为奇函数,且在[0,+∞)上是增函数.问是否存在这样的实数m,使得f(cos2θ-3)+f(4m-2mcos2θ)>f(0)对任意的θ∈R都成立,若存在,求出m的取值范围;若不存在,说明理由.分析 根据f(x)为奇函数,可得到函数f(x)在R上的单调性,且f(0)=0,原不等式可化为f(cos2θ-3)>f(2mcosθ-4m),即cos2θ-3>2mcosθ-4m,令t=cosθ,原不等式可转化为t∈[-1,1]时,假设存在m∈R,使得g(t)=t2-mt+2m-2>0恒成立,将m分离出来利用基本不等式即可求出m的取值范围.
解答 解:∵f(x)为奇函数,且在[0,+∞)上是增函数,
则f(x)在R上为增函数,且f(0)=0,
所以原不等式可化为f(cos2θ-3)>f(2mcosθ-4m),
∴cos2θ-3>2mcosθ-4m,即∴cos2θ-mcosθ+2m-2>0.
令t=cosθ,t∈[-1,1],则原不等式可转化为:
t2-mt+2m-2>0,t∈[-1,1],整理得m>$\frac{2-{t}^{2}}{2-t}$=t-2+$\frac{2}{t-2}$+4,
令h(t)=(2-t)+$\frac{2}{2-t}$≥2$\sqrt{2}$,t∈[-1,1],则当且仅当t=2-$\sqrt{2}$时,h(t)min=2$\sqrt{2}$,
故m>(t-2+$\frac{2}{t-2}$+4)max=4-2$\sqrt{2}$.
即存在这样的m,且m∈(4-2$\sqrt{2}$,+∞).
点评 本题主要考查了函数的奇偶性和单调性,以及利用基本不等式求最值,同时考查了转化的思想,属于中档题.
练习册系列答案
相关题目
5.已知△ABC的内角A、B、C对的边分别为a、b、c,sinA+$\sqrt{2}$sinB=2sinC,b=3,当内角C最大时,△ABC的面积等于( )
A. | $\frac{9+3\sqrt{3}}{4}$ | B. | $\frac{6+3\sqrt{2}}{4}$ | C. | $\frac{3\sqrt{2\sqrt{6}-\sqrt{2}}}{4}$ | D. | $\frac{3\sqrt{6}-3\sqrt{2}}{4}$ |