题目内容

1.一个无穷等比数列{an}中an>0,且若a2+a3+a4+…+a${\;}_{{n}_{\;}}$+…≤$\frac{{a}_{1}}{2}$,求公比q的取值范围.

分析 由无穷等比数列的求和公式,可得S=$\frac{{a}_{2}}{1-q}$,再由等比数列的通项公式,解不等式,结合0<q<1,即可得到所求范围.

解答 解:a2+a3+a4+…+a${\;}_{{n}_{\;}}$+…≤$\frac{{a}_{1}}{2}$,
由无穷等比数列的求和公式,可得
S=$\frac{{a}_{2}}{1-q}$≤$\frac{{a}_{1}}{2}$,
即为$\frac{{a}_{1}q}{1-q}$≤$\frac{{a}_{1}}{2}$,
即有$\frac{3q-1}{1-q}$≤0,
解得q≤$\frac{1}{3}$或q>1,
由0<q<1,可得
0<q≤$\frac{1}{3}$.
则公比q的范围是(0,$\frac{1}{3}$].

点评 本题考查无穷等比数列的求和公式的运用,考查二次不等式的解法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网