题目内容
【题目】已知定义在区间(﹣1,1)上的函数f(x)= 是奇函数,且f( )= ,
(1)确定f(x)的解析式;
(2)判断f(x)的单调性并用定义证明;
(3)解不等式f(t﹣1)+f(t)<0.
【答案】
(1)解:∵f(x)是奇函数,∴f(0)=b=0,
则f(x)= ,
∵f( )= ,
∴f( )= = ,解得a=1,
即f(x)=
(2)解:f(x)为增函数;
设﹣1<x1<x2<1,
则f(x1)﹣f(x2)= = ,
∵﹣1<x1<x2<1,
∴x1﹣x2<0,﹣1<x1x2<1,
∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),
即函数f(x)是增函数
(3)解:∵f(x)为奇函数,
∴不等式f(t﹣1)+f(t)<0.
等价为f(t﹣1)<﹣f(t)=f(﹣t),
则等价为 ,即 ,解得0<t<
即原不等式的解集为(0, )
【解析】(1)根据条件建立方程关系即可确定f(x)的解析式;(2)根据函数单调性的定义即可判断f(x)的单调性并用定义证明;(3)利用函数奇偶性和单调性之间的关系即可解不等式f(t﹣1)+f(t)<0.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元