题目内容

如图,四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部分都是平地,P是弧TS上一点,现有一位开发商想在平地上建造一个两边落在BC与CD上的长方形停车场PQCR.
(1)若∠PAT=θ,试写出四边形RPQC的面积S关于θ的函数表达式,并写出定义域;
(2)试求停车场的面积最大值.

【答案】分析:(1)延长RP交AB于M,设∠PAB=θ(0°<θ<90°),则AM=90cosθ,MP=90sinθ,PQ=100-cosθ,PR=100-90sinθ.由SPQCR=PQ•PR能求出四边形RPQC的面积S关于θ的函数表达式,并能写出定义域.
(2)设t=cosθ+sinθ.由0°≤θ≤90°,知,由此能求出停车场面积的最大值.
解答:解:(1)延长RP交AB于M,设∠PAB=θ(0°<θ<90°),
则AM=90cosθ,MP=90sinθ,
PQ=100-cosθ,PR=100-90sinθ.
∴SPQCR=PQ•PR=(100-90cosθ)(100-90sinθ)
=10000-9000(cosθ+sinθ)+8100cosθsinθ,{θ|0≤θ≤}.
(2)设t=cosθ+sinθ,
∵0°≤θ≤90°,
=
∴当时,SPQCR有最大值
答:长方形停车场PQCR面积的最大值为平方米.
点评:本题考查函数在生产实际中的具体运用,解题时要认真审题,仔细解答,注意分析数量间的相互关系,合理地建立方程.易错点是忽视数学表达式在生产实际中的定义域的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网