题目内容

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.
分析:(1)设点C到面PDE的距离为d,根据等积代换,利用
1
3
S△CDE•PA=
1
3
•S △PDE•d
求解.
(2)由(1)DE⊥面APE,所以∠AEP为二面角P-DE-A的平面角,在直角三角形PAE中求解.
解答:解:(1)连接AE,易得AE=DE=
2
,而AD=2∴△ADE为直角三角形,故AE⊥DE
又PA⊥面ABCD,所以PA⊥DE,DE⊥面APE,PE⊥DE,S△PED=
1
2
•PE•DE=
1
2
3
2
=
6
2

S△ECD=
1
2
•CE•CD=
1
2
,由VP-CDE=VC-PDE,设点C到面PDE的距离为d,
1
3
S△CDE•PA=
1
3
•S △PDE•d
,得d=
6
6

(2)由(1)DE⊥面APE,故AE⊥DE,PE⊥DE,所以∠AEP为二面角P-DE-A的平面角.又PA⊥AE,
cos∠AEP=
AE
AP
=
2
3
=
6
3
,所以二面角P-DE-A的余弦值为
6
3
点评:此题重点考查了线线垂直,线面垂直的判定及性质,面面垂直的判定及性质,还考查了利用三垂线定理求出二面角,点到平面的距离求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网