题目内容
11.在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为( )A. | 16π | B. | 2√3 | C. | π | D. | 32π |
分析 根据棱柱的体积公式求得棱柱的侧棱长,再利用三棱柱的底面是直角三角形可得外接球的球心为上、下底面直角三角形斜边中点连线的中点O,从而求得外接球的半径R,代入球的表面积公式计算.
解答 解:∵三棱柱ABC-A1B1C1中侧棱垂直于底面,设侧棱长为a,
又三棱柱的底面为直角三角形,BC=1,∠BAC=30°,
∴AC=√3,AB=2,
∴三棱柱的体积V=12×√3×a=3,
∴H=2√3,
△ABC的外接圆半径为12AB=1,
三棱柱的外接球的球心为上、下底面直角三角形斜边中点连线的中点O,如图:
∴外接球的半径R=2,
∴外接球的表面积S=4π×22=16π.
故选:A.
点评 本题考查了求三棱柱的外接球的表面积,利用三棱柱的结构特征求得外接球的半径是关键.
A. | {至多两个偶数} | B. | {至多两个奇数} | C. | {至少两个奇数} | D. | {至多一个偶数} |
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 3.845 | 6.635 | 7.879 |
A. | -5 | B. | -12 | C. | -5或-12 | D. | -5或-12或-2 |