题目内容
11.在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为( )A. | 16π | B. | $2\sqrt{3}$ | C. | π | D. | 32π |
分析 根据棱柱的体积公式求得棱柱的侧棱长,再利用三棱柱的底面是直角三角形可得外接球的球心为上、下底面直角三角形斜边中点连线的中点O,从而求得外接球的半径R,代入球的表面积公式计算.
解答 解:∵三棱柱ABC-A1B1C1中侧棱垂直于底面,设侧棱长为a,
又三棱柱的底面为直角三角形,BC=1,∠BAC=30°,
∴AC=$\sqrt{3}$,AB=2,
∴三棱柱的体积V=$\frac{1}{2}$×$\sqrt{3}$×a=3,
∴H=2$\sqrt{3}$,
△ABC的外接圆半径为$\frac{1}{2}$AB=1,
三棱柱的外接球的球心为上、下底面直角三角形斜边中点连线的中点O,如图:
∴外接球的半径R=2,
∴外接球的表面积S=4π×22=16π.
故选:A.
点评 本题考查了求三棱柱的外接球的表面积,利用三棱柱的结构特征求得外接球的半径是关键.
练习册系列答案
相关题目
2.集合I={0,1,2,3,4,5,6,7,8,9},从集合I中取5个元素,设A={至少两个偶数},则A的对立事件为( )
A. | {至多两个偶数} | B. | {至多两个奇数} | C. | {至少两个奇数} | D. | {至多一个偶数} |
19.某市调研后对甲、乙两个文科班的数学考试成绩进行分析,规定:大于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲方班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次掷一枚均匀的骰子,出现点数之和为被抽取人的序号.试求抽到9号或10号的概率.
附:参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲方班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次掷一枚均匀的骰子,出现点数之和为被抽取人的序号.试求抽到9号或10号的概率.
附:参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 3.845 | 6.635 | 7.879 |
3.若关于x的方程$\frac{x+1}{x+2}$-$\frac{x}{x-1}$=$\frac{ax+2}{(x-1)(x+2)}$无解,求a的值为( )
A. | -5 | B. | -$\frac{1}{2}$ | C. | -5或-$\frac{1}{2}$ | D. | -5或-$\frac{1}{2}$或-2 |