题目内容

已知函数的定义域为,值域为[-5,4].试求函数g(x)=msinx+2ncosx(x∈R)的最小正周期和最值.
【答案】分析:由辅助解公式,正弦型函数的性质,根据函数的定义域为,值域为[-5,4].我们易构造关于m,n的方程组,解方程组即可得到函数g(x)=msinx+2ncosx的解析式,进而得到函数g(x)=msinx+2ncosx(x∈R)的最小正周期和最值.
解答:解:+m+n

当m>0时,f(x)max=,f(x)min=-m+n=-5
解得m=3,n=-2,
从而,g(x)=3sinx-4cosx=5sin(x+φ)(x∈R),
T=2π,最大值为5,最小值为-5;
当m<0时,解得m=-3,n=1,
从而,,T=2π,最大值为
最小值为
点评:本题考查三角函数的运算.考查的知识点有和差化积、周期与三角函数值域的求法、分类讨论的思想方法.近几年三角运算一直是考试所要求的基本题型之一,本题就是基于这一要求而制定的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网