题目内容

15.设数列{an}满足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$,则an=(  )
A.1-$\frac{1}{{2}^{n}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n}}$D.$\frac{n}{{2}^{n}}$

分析 利用递推关系即可得出.

解答 解:∵a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$,
∴当n=1时,a1=1-$\frac{1}{2}$=$\frac{1}{2}$.
当n≥2时,a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n-1}}{n-1}$=1-$\frac{1}{{2}^{n-1}}$,
∴$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$-$(1-\frac{1}{{2}^{n-1}})$=$\frac{1}{{2}^{n}}$,
∴an=$\frac{n}{{2}^{n}}$.
当n=1时也成立,
∴an=$\frac{n}{{2}^{n}}$.
故选:D.

点评 本题考查了数列的通项公式求法、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网