题目内容
(04年广东卷)设函数在处连续,则
(A) (B) (C) (D)
(05年广东卷)(14分)
设函数在上满足,,且在闭区间[0,7]上,只有.
(Ⅰ)试判断函数的奇偶性;
(Ⅱ)试求方程在闭区间上的根的个数,并证明你的结论.
(04年广东卷)(12分)
设函数
(I)证明:当且时,
(II)点(0<x0<1)在曲线上,求曲线上在点处的切线与轴,轴正向所围成的三角形面积的表达式。(用表示)
设函数,其中常数为整数
(I)当为何值时,
(II)定理:若函数在上连续,且与异号,则至少存在一点,使得
试用上述定理证明:当整数时,方程在内有两个实根
(04年广东卷)(14分)
设直线与椭圆相交于两点,又与双曲线相交于C、D两点,三等分线段,求直线的方程。