题目内容
设n是4的倍数,试求和:S=1+2i+3i2+4i3+…+(n+1)in.
解:∵S=1+2i+3i2+…+(n+1)in, ①
∴iS=i+2i2+…+nin+(n+1)in+1. ②
①-②得(1-i)S=1+i+i2+…+in-(n+1)·in+1=-(n+1)i n+1.
∵n是4的倍数,
∴in+1=in·i=i.
∴(1-i)S=-(n+1)i=1-(n+1)i.
∴S==i=(1+)-i.
练习册系列答案
相关题目
题目内容
设n是4的倍数,试求和:S=1+2i+3i2+4i3+…+(n+1)in.
解:∵S=1+2i+3i2+…+(n+1)in, ①
∴iS=i+2i2+…+nin+(n+1)in+1. ②
①-②得(1-i)S=1+i+i2+…+in-(n+1)·in+1=-(n+1)i n+1.
∵n是4的倍数,
∴in+1=in·i=i.
∴(1-i)S=-(n+1)i=1-(n+1)i.
∴S==i=(1+)-i.