题目内容
【题目】我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正边形逼近圆,算得圆周率的近似值记为
,那么用圆的内接正
边形逼近圆,算得圆周率的近似值加
可表示成( )
A.B.
C.
D.
【答案】C
【解析】
设圆的半径为,由内接正
边形的面积无限接近圆的面积可得:
,由内接正
边形的面积无限接近圆的面积可得:
,问题得解.
设圆的半径为,将内接正
边形分成
个小三角形,
由内接正边形的面积无限接近圆的面积可得:
,整理得:
,
此时,即:
同理,由内接正边形的面积无限接近圆的面积可得:
,整理得:
此时
所以
故选:C
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某高校从参加今年自主招生考试的学生中随机抽取容量为的学生成绩样本,得频率分布表如下:
组号 | 分组 | 频率 | 频数 |
第一组 | |||
第二组 | ① | ||
第三组 | ② | ||
第四组 | |||
第五组 | |||
合计 |
(1)写出表中①、②位置的数据;
(2)估计成绩不低于分的学生约占多少;
(3)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取名学生进行第二轮考核,分别求第三、四、五各组参加考核的人数.
【题目】某保险公司开设的某险种的基本保费为万元,今年参加该保险的人来年继续购买该险种的投保人称为续保人,续保人的下一年度的保费与其与本年度的出险次数的关联如下:
本年度出险次数 | ||||||
下一次保费(单位:万元) |
设今年初次参保该险种的某人准备来年继续参保该险种,且该参保人一年内出险次数的概率分布列如下:
一年内出险次数 | ||||||
概率 |
()求此续保人来年的保费高于基本保费的概率.
()若现如此续保人来年的保费高于基本保费,求其保费比基本保费高出
的概率.
()求该续保人来年的平均保费与基本保费的比值.