题目内容
如图PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,E、F分别是点A在PB、PC上的射影,给出下列结论:
①AF⊥PB ②AE⊥平面PBC ③AF⊥BC ④EF⊥PB ⑤二面角A-PB-C的平面角是∠AFE,
其中真命题的序号是______.

①AF⊥PB ②AE⊥平面PBC ③AF⊥BC ④EF⊥PB ⑤二面角A-PB-C的平面角是∠AFE,
其中真命题的序号是______.

∵F是点A在PB上的射影,∴AF⊥PB,①√;
∵PA⊥⊙O所在平面,∴PA⊥BC,∵AB是⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,∴AE⊥BC,又∵AE⊥PC
∴AE⊥平面PBC,故②√;
∵假设AF⊥BC,则AF⊥平面PBC,又∵AE⊥平面PBC,∴E、F重合,与已知矛盾.∴③×;
∵AE⊥平面PBC,∴AE⊥PB,又PB⊥AF,∴PB⊥平面AEF,∴EF⊥PB,故④√;
∵PB⊥平面AEF,∴∠AFE是二面角A-PB-C的平面角,故⑤√;
故答案是①②④⑤
∵PA⊥⊙O所在平面,∴PA⊥BC,∵AB是⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,∴AE⊥BC,又∵AE⊥PC
∴AE⊥平面PBC,故②√;

∵假设AF⊥BC,则AF⊥平面PBC,又∵AE⊥平面PBC,∴E、F重合,与已知矛盾.∴③×;
∵AE⊥平面PBC,∴AE⊥PB,又PB⊥AF,∴PB⊥平面AEF,∴EF⊥PB,故④√;
∵PB⊥平面AEF,∴∠AFE是二面角A-PB-C的平面角,故⑤√;
故答案是①②④⑤

练习册系列答案
相关题目