题目内容
已知函数f(x)=ax、g(x)=bx(a>0,b>0,且a≠1,b≠1)的反函数分别为y=f-1(x)、y=g-1(x).若lga+lgb=0,则y=f-1(x)与y=g-1(x)的图象( )
分析:先求出函数f(x)=ax(a>0且a≠1)的反函数f-1(x)=logax,再求出g(x)=bx(b>0且b≠1)的反函数g-1(x),发现这两个反函数的解析式中,自变量相同,函数值相反,所以,图象关于x轴对称.
解答:解:∵lga+lgb=0,
∴ab=1,
∵函数f(x)=ax(a>0且a≠1),
∴f-1(x)=logax,
∵g(x)=bx(b>0且b≠1),
∴g-1(x)=logbx=
=
=-logax,
∴f-1(x)与g-1(x)的自变量相同,函数值相反,
所以,图象关于x轴对称.
故选B.
∴ab=1,
∵函数f(x)=ax(a>0且a≠1),
∴f-1(x)=logax,
∵g(x)=bx(b>0且b≠1),
∴g-1(x)=logbx=
log | x
|
log |
a |
∴f-1(x)与g-1(x)的自变量相同,函数值相反,
所以,图象关于x轴对称.
故选B.
点评:本题考查反函数的求法,奇偶函数的图象的对称性.
练习册系列答案
相关题目