题目内容

12.已知△ABC的外接圆圆心为O,半径为2,$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|.
(1)求$\overrightarrow{CA}$$•\overrightarrow{CB}$的值;
(2)若E是AC的中点,求|$\overrightarrow{BE}$+$\overrightarrow{OE}$|的值.

分析 (1)根据题意,画出图形,求得AB=AC=OA=OB=OC=2,四边形ABOC为菱形,∠ACB=30°,BC=2$\sqrt{3}$,运用向量数量积的定义即可得到所求值;
(2)运用向量的平方即为模的平方,分别求得|$\overrightarrow{BE}$|=$\sqrt{7}$,|$\overrightarrow{OE}$|=$\sqrt{3}$,$\overrightarrow{BE}$•$\overrightarrow{OE}$=3,即可得到所求值.

解答 解:(1)如图所示
△ABC中,∵$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,∴$\overrightarrow{OB}$+$\overrightarrow{OC}$-$\overrightarrow{OA}$=$\overrightarrow{0}$,
即$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OA}$,
取BC的中点为D,则$\overrightarrow{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{OD}$=$\overrightarrow{OA}$,
∴cos∠BOD=$\frac{OD}{OB}$=$\frac{1}{2}$,
∴∠BOD=60°,∴∠BOC=2∠BOD=120°,
∴AB=AC=OA=OB=OC=2,四边形ABOC为菱形,
∴BC=2$\sqrt{3}$,$\overrightarrow{CA}$$•\overrightarrow{CB}$=|$\overrightarrow{CA}$|•|$\overrightarrow{CB}$|cos∠ACB
=2×$2\sqrt{3}$×$\frac{\sqrt{3}}{2}$=6;
(2)$\overrightarrow{BE}$=$\overrightarrow{AE}$-$\overrightarrow{AB}$,|$\overrightarrow{BE}$|=$\sqrt{(\overrightarrow{AE}-\overrightarrow{AB})^{2}}$=$\sqrt{{\overrightarrow{AE}}^{2}-2\overrightarrow{AE}•\overrightarrow{AB}+{\overrightarrow{AB}}^{2}}$
=$\sqrt{1-2×2×(-\frac{1}{2})+4}$=$\sqrt{7}$,
$\overrightarrow{OE}$=$\overrightarrow{CE}$-$\overrightarrow{CO}$,|$\overrightarrow{OE}$|=$\sqrt{(\overrightarrow{CE}-\overrightarrow{CO})^{2}}$=$\sqrt{{\overrightarrow{CE}}^{2}-2\overrightarrow{CE}•\overrightarrow{CO}+{\overrightarrow{CO}}^{2}}$
=$\sqrt{1-2×2×\frac{1}{2}+4}$=$\sqrt{3}$,
$\overrightarrow{BE}$•$\overrightarrow{OE}$=($\overrightarrow{AE}$-$\overrightarrow{AB}$)•($\overrightarrow{CE}$-$\overrightarrow{CO}$)
=$\overrightarrow{AE}•\overrightarrow{CE}$-$\overrightarrow{AE}$•$\overrightarrow{CO}$-$\overrightarrow{AB}$•$\overrightarrow{CE}$+$\overrightarrow{AB}$•$\overrightarrow{CO}$
=-1-1×2×(-$\frac{1}{2}$)-1×2×$\frac{1}{2}$+2×2=3,
即有|$\overrightarrow{BE}$+$\overrightarrow{OE}$|=$\sqrt{{\overrightarrow{BE}}^{2}+{\overrightarrow{OE}}^{2}+2\overrightarrow{BE}•\overrightarrow{OE}}$
=$\sqrt{7+3+2×3}$=4.

点评 本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算求解能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网