题目内容

已知函数f(x)=ax2+ax和g(x)=x﹣a,其中a∈R,且a≠0.
(I)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试求△OAB的面积S的最大值;
(II)若p和q是方程f(x)﹣g(x)=0的两正根,且 ,证明:当x∈(0,P)时,f(x)<P﹣a.
解:(I)依题意,f(x)=g(x),即ax2+ax=x﹣a,
整理,得ax2+(a﹣1)x+a=0,①
∵a≠0,函数f(x)与g(x)图象相交于不同的两点A、B,
∴△>0,即△=(a﹣1)2﹣4a2=﹣3a2﹣2a+1=(3a﹣1)(﹣a﹣1)>0.
∴﹣1<a<且a≠0.
设A(x1,y1),B(x2,y2),且x1<x2
由①得,x1x2=1>0,x1+x2=﹣
设点O到直线g(x)=x﹣a的距离为d,则d=
∴S△OAB==
∵﹣1<a<且a≠0,∴当a=﹣时,S△OAB有最大值
(II)证明:由题意可知f(x)﹣g(x)=a(x﹣p)(x﹣q)
∴f(x)﹣(p﹣a)=a(x﹣p)(x﹣q)+x﹣a﹣(p﹣a)=(x﹣p)(ax﹣aq+1),
当x∈(0,p)时,x﹣p<0,且ax﹣aq+1>1﹣aq>0,
∴f(x)﹣(p﹣a)<0,
∴f(x)<p﹣a.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网