题目内容

16.在锐角△ABC中,已知内角A、B、C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大小;
(2)如果b=1,求△ABC的面积S△ABC的最大值.

分析 (1)由条件利用两个向量共线的性质求得tan2B的值,再根据△ABC为锐角三角形,B的值.
(2)若b=1,则由余弦定理、基本不等式求得 ac 的最大值,可得△ABC面积为$\frac{1}{2}$ac•sinB,求得它的最大值.

解答 解:(1)∵向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
∴2sin(A+C)(2cos2$\frac{B}{2}$-1)-$\sqrt{3}$cos2B=0,即 2sinBcosB=$\sqrt{3}$cos2B,
∴tan2B=$\frac{sin2B}{cos2B}$=$\sqrt{3}$.
再根据△ABC为锐角三角形,可得0<B<$\frac{π}{2}$,∴2B=$\frac{π}{3}$,B=$\frac{π}{6}$.
(2)若b=1,则由余弦定理可得 b2=1=a2+c2-2ac•cosB≥2ac-$\sqrt{3}$ac,
解得 ac≤$\frac{1}{2-\sqrt{3}}$=2+$\sqrt{3}$,当且仅当a=c时,取等号,
故△ABC面积的最大值为$\frac{1}{2}$ac•sinB=$\frac{1}{2}$(2+$\sqrt{3}$)•$\frac{1}{2}$=$\frac{2+\sqrt{3}}{4}$.

点评 本题主要考查两个向量共线的性质,正弦定理和余弦定理、基本不等式的应用,考查了转化思想和计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网