题目内容

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
1
1+x
<f(
1
x
)<
1
x

(3)当n∈N+且n≥2时,求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n
分析:(1)求导函数,确定合适的单调性,g(x)在[0,1]上单调减,在[1,2]上单调增,比较端点的函数值,即可确定g(x)在[0,2]上的最大值与最小值;
(2)函数的定义域为(-1,+∞),构造函数h(x)=f(x)-x,可得函数在(-1,0)上单调增,在(0,+∞)上单调减,从而在x=0处,函数取得极大值,也是最大值,同理构造函数φ(x)=f(x)-
x
1+x
,可得函数在(-1,0)上单调减,在(0,+∞)上单调增,从而在x=0处,函数取得极小,也是最小值
(3)根据f(x)=ln(x+1),可得f(n)-f(n-1)=f(
1
n
)由(2)知:
1
1+n
<f(
1
n
)<
1
n
,从而
1
1+n
<f(n)-f(n-1)<
1
n
,进而利用叠加可得结论.
解答:(1)解:g(x)=
1
4
x2-x+ln(x+1)
g′(x)=
1
2
x-1+
1
x+1
=
x(x-1)
2(x+1)

∴g(x)在[0,1]上单调减,在[1,2]上单调增
∵g(0)=0,g(1)=-
3
4
+ln2
,g(2)=-1+ln3
∴g(x)在[0,2]上的最大值为-1+ln3,最小值为0
(2)证明:函数的定义域为(-1,+∞)
构造函数h(x)=f(x)-x,∴h′(x)=
1
x+1
-1=
-x
x+1

∴函数在(-1,0)上单调增,在(0,+∞)上单调减
∴在x=0处,函数取得极大值,也是最大值
∴h(x)≤h(0)=0
∴f(x)-x≤0
∵x>0,∴f(
1
x
)<
1
x

构造函数φ(x)=f(x)-
x
1+x
,∴φ′(x)=
x
(x+1)2

∴函数在(-1,0)上单调减,在(0,+∞)上单调增
∴在x=0处,函数取得极小,也是最小值
∴φ(x)≥φ(0)=0
∴f(x)-
x
1+x
≥0
∵x>0,∴
1
1+x
<f(
1
x
)

1
1+x
<f(
1
x
)<
1
x

(3)证明:∵f(x)=ln(x+1),∴f(n)-f(n-1)=f(
1
n

由(2)知:
1
1+n
<f(
1
n
)<
1
n

1
1+n
<f(n)-f(n-1)<
1
n

1
1+1
<f(1)-f(0)<1
1
1+2
<f(2)-f(1)<
1
2
1
1+3
<f(3)-f(3-1)<
1
3
,…,
1
1+n
<f(n)-f(n-1)<
1
n

叠加可得:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n
点评:本题考查导数知识的运用,考查不等式的证明,解题的关键是正确求导,确定函数的单调性,适当构造函数,确定函数的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网