ÌâÄ¿ÄÚÈÝ
½«Æ溯ÊýµÄͼÏó¹ØÓÚԵ㣨¼´£¨0£¬0£©£©¶Ô³ÆÕâÒ»ÐÔÖʽøÐÐÍع㣬ÓÐÏÂÃæµÄ½áÂÛ£º
¢Ùº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2bµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬b£©³ÉÖÐÐĶԳƣ®
¢Úº¯Êýy=f£¨x£©Âú×ãF£¨x£©=f£¨x+a£©-f£¨a£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬f£¨a£©£©³ÉÖÐÐĶԳƣ¨×¢£ºÈôa²»ÊôÓÚxµÄ¶¨ÒåÓòʱ£¬Ôòf£¨a£©²»´æÔÚ£©£®
ÀûÓÃÉÏÊö½áÂÛÍê³ÉÏÂÁи÷Ì⣺
£¨1£©Ð´³öº¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨2£©ÒÑÖªm£¨m¡Ù-1£©ÎªÊµÊý£¬ÊÔÎʺ¯Êýf(x)=
µÄͼÏóÊÇ·ñ¹ØÓÚijһµã³ÉÖÐÐĶԳƣ¿ÈôÊÇ£¬Çó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢ËµÃ÷ÀíÓÉ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èôº¯Êýf(x)=(x-
)(|x+t|+|x-3|)-4µÄͼÏó¹ØÓÚµã(
£¬f(
))³ÉÖÐÐĶԳƣ¬ÇótµÄÖµ£®
¢Ùº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2bµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬b£©³ÉÖÐÐĶԳƣ®
¢Úº¯Êýy=f£¨x£©Âú×ãF£¨x£©=f£¨x+a£©-f£¨a£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬f£¨a£©£©³ÉÖÐÐĶԳƣ¨×¢£ºÈôa²»ÊôÓÚxµÄ¶¨ÒåÓòʱ£¬Ôòf£¨a£©²»´æÔÚ£©£®
ÀûÓÃÉÏÊö½áÂÛÍê³ÉÏÂÁи÷Ì⣺
£¨1£©Ð´³öº¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨2£©ÒÑÖªm£¨m¡Ù-1£©ÎªÊµÊý£¬ÊÔÎʺ¯Êýf(x)=
x+m |
x-1 |
£¨3£©Èôº¯Êýf(x)=(x-
2 |
3 |
2 |
3 |
2 |
3 |
£¨1£©º¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±êΪ(
£¬0)£¨k¡ÊN*£©£® ¡£¨2·Ö£©
µ±k=2n£¨n¡ÊN*£©Ê±£¬tan(
+x)+tan(
-x)=tanx-tanx=0£»
µ±k=2n+1£¨n¡ÊN*£©Ê±£¬tan(
+x)+tan(
-x)=-cotx+cotx=0£¬µÃÖ¤£® ¡£¨6·Ö£©
£¨2£©ÓÉf(x)=
=1+
£¬µÃf£¨x£©µÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨1£¬1£©£®¡£¨9·Ö£©f(x+1)+f(1-x)=
+
=
+
=2£¬ÓɽáÂۢٵ㬶ÔʵÊým£¨m¡Ù-1£©£¬º¯Êýf(x)=
µÄͼÏó¹ØÓڵ㣨1£¬1£©³ÉÖÐÐĶԳƣ® ¡£¨12·Ö£©
£¨3£©ÓɽáÂÛ¢ÚF(x)=f(x+
)-f(
)=x(|x+
+t|+|x-
|)ΪÆ溯Êý£¬¡£¨14·Ö£©
ÆäÖÐg£¨x£©=xΪÆ溯Êý£¬¹Êh(x)=|x+
+t|+|x-
|Ϊżº¯Êý
ÓÚÊÇ£¬ÓÉh£¨x£©=h£¨-x£©¿ÉµÃ|x+
+t|+|x-
|=|x-(
+t)|+|x+
|£¬¡£¨16·Ö£©
Òò´Ë£¬
+t=
£¬½âµÃt=
ΪËùÇó£® ¡£¨18·Ö£©
k¦Ð |
2 |
µ±k=2n£¨n¡ÊN*£©Ê±£¬tan(
k¦Ð |
2 |
k¦Ð |
2 |
µ±k=2n+1£¨n¡ÊN*£©Ê±£¬tan(
k¦Ð |
2 |
k¦Ð |
2 |
£¨2£©ÓÉf(x)=
x+m |
x-1 |
m+1 |
x-1 |
x+1+m |
x+1-1 |
1-x+m |
1-x-1 |
x+1+m |
x |
-x+1+m |
-x |
x+m |
x-1 |
£¨3£©ÓɽáÂÛ¢ÚF(x)=f(x+
2 |
3 |
2 |
3 |
2 |
3 |
7 |
3 |
ÆäÖÐg£¨x£©=xΪÆ溯Êý£¬¹Êh(x)=|x+
2 |
3 |
7 |
3 |
ÓÚÊÇ£¬ÓÉh£¨x£©=h£¨-x£©¿ÉµÃ|x+
2 |
3 |
7 |
3 |
2 |
3 |
7 |
3 |
Òò´Ë£¬
2 |
3 |
7 |
3 |
5 |
3 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿