题目内容
【题目】在直角坐标系中,已知曲线(为参数),在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.
(1)求曲线与的交点的直角坐标;
(2)设点, 分别为曲线上的动点,求的最小值.
【答案】(1)点的直角坐标为;(2)的最小值为.
【解析】试题分析:(1)先把曲线的参数方程化成普通方程为 ,利用三角函数公式和极坐标转换直角坐标公式得曲线的直角坐标系方程,两个方程联立解得交点的直角坐标为.
(2)先由已知得曲线的直角坐标方程为,根据点到直线的距离公式求出曲线的圆心到直线的距离,所以.
试题解析:(1)由得曲线的普通方程为 .
由,得曲线的直角坐标系方程为.
由,得,解得或(舍去).
所以点的直角坐标为.
(2)由,得曲线的直角坐标方程为,即.
则曲线的圆心到直线的距离为.
因为圆的半径为1,所以.
练习册系列答案
相关题目
【题目】某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本,对高一年级的100名学生的成绩进行统计,并按, , , , , 分组,得到成绩分布的频率分布直方图(如图)。
(1)若规定60分以上(包括60分)为合格,计算高一年级这次竞赛的合格率;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(3)若高二年级这次竞赛的合格率为,由以上统计数据填写下面列联表,并问是否有的把握认为“这次知识竞赛的成绩与年级有关”。
高一 | 高二 | 合计 | |
合格人数 | |||
不合格人数 | |||
合计 |
附:参考数据与公式
高一 | 合计 | ||
合格人数 | a | b | a+b |
不合格人数 | c | d | c+d |
合计 | a+c | b+d | n |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |