题目内容
已知,函数.
(1)若函数在区间内是减函数,求实数的取值范围;
(2)求函数在区间上的最小值;
(1)(2)
解析试题分析:解:(1)∵,令得,
当时,在递减,不合舍去
当时,在递减,
(2)∵,令得
①若,则当时,,所以在区间上是增函数,
所以.
②若,即,则当时,,所以在区间上是增函数,所以.
③若,即,则当时,;当时,.所以在区间上是减函数,在区间上是增函数.
所以.
④若,即,则当时,,
所以在区间上是减函数.所以.
综上所述,函数在区间的最小值:
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。
练习册系列答案
相关题目