题目内容

..(本小题满分12分)
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.

解:(1)由已知:对于,总有①成立
  (n ≥ 2)②  
①-②得

均为正数,∴  (n ≥ 2)
∴数列是公差为1的等差数列                
又n=1时,, 解得="1,  "
.()  
(2) 解:由(1)可知
 

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网