题目内容
..(本小题满分12分)
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.
解:(1)由已知:对于,总有①成立
∴ (n ≥ 2)②
①-②得
∴
∵均为正数,∴ (n ≥ 2)
∴数列是公差为1的等差数列
又n=1时,, 解得="1, "
∴.()
(2) 解:由(1)可知
解析
练习册系列答案
相关题目
题目内容
..(本小题满分12分)
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.
解:(1)由已知:对于,总有①成立
∴ (n ≥ 2)②
①-②得
∴
∵均为正数,∴ (n ≥ 2)
∴数列是公差为1的等差数列
又n=1时,, 解得="1, "
∴.()
(2) 解:由(1)可知
解析