ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÃüÌ⣺£¨1£©ÔÚ¡÷ABCÖУ¬¡°A£¼B¡±ÊÇ¡±sinA£¼sinB¡±µÄ³äÒªÌõ¼þ£»
£¨2£©ÔÚͬһ×ø±êϵÖУ¬º¯Êýy=sinxµÄͼÏóºÍº¯Êýy=xµÄͼÏóÓÐÈý¸ö¹«¹²µã£»
£¨3£©ÔÚ¡÷ABCÖУ¬ÈôAB=2£¬AC=3£¬¡ÏABC=
¦Ð |
3 |
£¨4£©½«º¯Êýy=sin(2x+
¦Ð |
3 |
¦Ð |
3 |
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
·ÖÎö£º£¨1£©Í¨¹ýÀûÓúͲ»ý¹«Ê½ÅжϳösinA-sinBÓë0µÄ¹Øϵ£¬½ø¶ø¿ÉÍƶϳö£¨1£©ÕýÈ·£®
£¨2£©Í¨¹ýÕýÏÒº¯ÊýºÍÖ±ÏßµÄͼÏóÍƶϳö£¨2£©²»ÕýÈ·£®
£¨3£©ÀûÓÃÕýÏÒ¶¨ÀíÇóµÃsinAµÄÖµ£¬¼ÙÉèΪ¶Û½Çͨ¹ýÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔÅжϳöA²»·ûºÏ£¬ÍƶϳöAΪÈñ½Ç£®£¨3£©ÕýÈ·£®
£¨4£©ÀûÓÃÈý½Çº¯ÊýͼÏó±ä»»µÄÐÔÖÊÍƶϳö£¨4£©²»ÕýÈ·£®
£¨2£©Í¨¹ýÕýÏÒº¯ÊýºÍÖ±ÏßµÄͼÏóÍƶϳö£¨2£©²»ÕýÈ·£®
£¨3£©ÀûÓÃÕýÏÒ¶¨ÀíÇóµÃsinAµÄÖµ£¬¼ÙÉèΪ¶Û½Çͨ¹ýÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔÅжϳöA²»·ûºÏ£¬ÍƶϳöAΪÈñ½Ç£®£¨3£©ÕýÈ·£®
£¨4£©ÀûÓÃÈý½Çº¯ÊýͼÏó±ä»»µÄÐÔÖÊÍƶϳö£¨4£©²»ÕýÈ·£®
½â´ð£º½â£º£¨1£©sinA-sinB=2cos
sin
¡ß
£¼
£¬A£¼B
¡ß2cos
sin
£¼0
½ø¶ø¿ÉÍƶϳö£¬¡°A£¼B¡±ÊÇ¡±sinA£¼sinB¡±µÄ³äÒªÌõ¼þ£»£¨1£©ÕýÈ·£®
£¨2£©¸ù¾ÝÕýÏÒº¯ÊýºÍÖ±ÏßµÄͼÏó¿ÉÖªÖ»ÓÐ2¸ö½»µã£¬£¨2£©´íÎó£®
£¨3£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃ
=
£¬ÇóµÃsinA=
£¬ÈôAΪ¶Û½Ç£¬sinA=
£¼
£¬ÔòA£¾
£¬ÔòA+B£¾¦Ð²»·ûºÏÌâÒ⣬
¹ÊAÖ»ÄÜΪÈñ½Ç£®£¨3£©ÕýÈ·£®
£¨4£©½«º¯Êýy=sin(2x+
)µÄͼÏóÏòÓÒƽÒÆ
¸öµ¥Î»µÃy=sin[2£¨x-
£©+
]=sin£¨2x-
£©µÄͼÏ󣬹ʣ¨4£©´íÎó£®
¹Ê´ð°¸Îª£º£¨1£©£¨3£©£®
A+B |
2 |
A-B |
2 |
¡ß
A+B |
2 |
¦Ð |
2 |
¡ß2cos
A+B |
2 |
A-B |
2 |
½ø¶ø¿ÉÍƶϳö£¬¡°A£¼B¡±ÊÇ¡±sinA£¼sinB¡±µÄ³äÒªÌõ¼þ£»£¨1£©ÕýÈ·£®
£¨2£©¸ù¾ÝÕýÏÒº¯ÊýºÍÖ±ÏßµÄͼÏó¿ÉÖªÖ»ÓÐ2¸ö½»µã£¬£¨2£©´íÎó£®
£¨3£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃ
3 | ||
sin
|
2 |
sinA |
| ||
3 |
| ||
3 |
| ||
2 |
2¦Ð |
3 |
¹ÊAÖ»ÄÜΪÈñ½Ç£®£¨3£©ÕýÈ·£®
£¨4£©½«º¯Êýy=sin(2x+
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
¹Ê´ð°¸Îª£º£¨1£©£¨3£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÈý½Çº¯ÊýµÄ»ù±¾ÐÔÖÊ£®×ۺϿ¼²éÁË»ù´¡ÖªÊ¶µÄÊìÁ·³Ì¶È£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿