题目内容
【题目】设椭圆的离心率,椭圆上的点到左焦点的距离的最大值为3.
(1)求椭圆的方程;
(2)求椭圆的外切矩形的面积的取值范围.
【答案】(1)(2)
【解析】
(1)根据题意求出,进而可求出结果;
(2)当矩形的一组对边斜率不存在时,可求出矩形的面积;当矩形四边斜率都存在时,不防设,所在直线斜率为,则,斜率为,设出直线的方程为,联立直线与椭圆方程,结合韦达定理以及弦长公式等,即可求解.
解:(1)由题设条件可得,,解得,
∴,所以椭圆的方程为
(2)当矩形的一组对边斜率不存在时,得矩形的面积
当矩形四边斜率都存在时,不防设,所在直线斜率为,则,斜率为,
设直线的方程为,与椭圆联立可得
,
由,得
显然直线的直线方程为,直线,间的距离
,
同理可求得,间的距离为
所以四边形面积为
(等号当且仅当时成立)
又,
故由以上可得外切矩形面积的取值范围是
练习册系列答案
相关题目