题目内容

3.已知过点A($\sqrt{3}$,1)和B(5,12),以x轴正半轴为始边按照逆时针旋转所形成的最小正角分别为α,β.
(1)求sinα和cosβ;    
(2)求sin(2α+β).

分析 (1)由条件利用任意角的三角函数的定义,求得sinα和cosβ的值.
(2)由条件利用二倍角的三角公式求得sin2α、cos2α的值,再利用两角和的正弦公式求得sin(2α+β)=sin2αcosβ=cos2αsinβ 的值.

解答 解:(1)由三角函数定义知sinα=$\frac{1}{\sqrt{3+1}}$=$\frac{1}{2}$,cosβ=$\frac{5}{\sqrt{25+144}}$=$\frac{5}{13}$.
(2)由于0<α,β<$\frac{π}{2}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{3}}{2}$,sinβ=$\sqrt{{1-sin}^{2}β}$=$\frac{12}{13}$,
∴sin2α=2sinαcosα=$\frac{\sqrt{3}}{2}$,cos2α=2cosα2-1=$\frac{7}{8}$,
∴sin(2α+β)=sin2αcosβ=cos2αsinβ=$\frac{\sqrt{3}}{2}×\frac{5}{13}$+$\frac{7}{8}×\frac{12}{13}$=$\frac{5\sqrt{3}+21}{26}$.

点评 本题主要考查任意角的三角函数的定义,二倍角的三角公式,两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网