题目内容
半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为( )
A、8 | B、16 | C、32 | D、64 |
分析:AB,AC,AD为球的内接长方体的一个角,故a2+b2+c2=64,计算三个三角形的面积之和,利用基本不等式求最大值.
解答:解析:C.根据题意可知,设AB=a,AC=b,AD=c,则可知AB,AC,AD为球的内接长方体的一个角.故a2+b2+c2=64,而S△ABC+S△ACD+S△ADB=
(ab+ac+bc)≤
=
=32.
故选 C.
1 |
2 |
a2+b2+a2+c2+b2+c2 |
4 |
a2+b2+c2 |
2 |
故选 C.
点评:本题考查了利用构造法求球的直径、利用基本不等式求最值问题,考查了同学们综合解决交汇性问题的能力.
练习册系列答案
相关题目