题目内容
已知椭圆C:+=1(a>b>0).
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程.
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)过原点O任意作两条互相垂直的直线与椭圆+=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.
(1) +y2=1 (2) k∈(-2,-)∪(,2) (3) +=1
【解析】(1)由已知2a=4,∴a=2,
又e==,∴c=.
因此,b2=a2-c2=4-3=1,
∴椭圆的标准方程为+y2=1.
(2)显然直线x=0不满足题设条件,
可设直线l:y=kx+2,A(x1,y1),B(x2,y2).
由消去y得(1+4k2)x2+16kx+12=0.
∵Δ=(16k)2-4×12(1+4k2)>0,
∴k∈(-∞,-)∪(,+∞) ①
又x1+x2=,x1x2=,
由0°<∠AOB<90°⇒·>0,
∴·=x1x2+y1y2>0,
所以·=x1x2+y1y2
=x1x2+(kx1+2)(kx2+2)
=(1+k2)x1x2+2k(x1+x2)+4,
∴-2<k<2 ②
由①②得k∈(-2,-)∪(,2).
(3)由椭圆的对称性可知PQSR是菱形,原点O到各边的距离相等.
当P在y轴上,Q在x轴上时,直线PQ的方程为+=1,由d=1得+=1,
当P不在y轴上时,设直线PS的斜率为k,P(x1,kx1),则直线RQ的斜率为-,Q(x2,-x2),
由得=+ ①
同理=+ ②
在Rt△OPQ中,由d·|PQ|=|OP|·|OQ|,
即|PQ|2=|OP|2·|OQ|2.
所以(x1-x2)2+(kx1+)2
=[+(kx1)2]·[+()2],
化简得+=1+k2,
k2(+)++=1+k2,
即+=1.
综上,+=1.
【方法技巧】平面向量在平面解析几何中的应用
平面向量作为数学解题的工具,常与平面解析几何结合综合考查,主要涉及向量的数量积、夹角、长度、距离等方面的知识,应用方向主要是平面内点的坐标与对应向量数量积的转化,通过数量积运算寻找等量关系,使问题转化,从而使问题获解.