题目内容

已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(I)求a,b所满足的关系;
(II)若直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点,求k的最小值;
(III)试判断是否存在a∈(-2,0)∪(0,2),使得对任意的x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.
分析:(I) F(x)=f(x)-g(x)=ax2+bx+1-ln(ex),求导函数,利用F(x)=f(x)-g(x)在x=1处取得极值,可确定a,b所满足的关系;
(II)由题意方程kx=ax2+(1-2a)x+1在x∈[1,2]时总有解,分离参数,分类讨论求出函数的最值,即可求得k的最小值;
(III)F(x)=ax2+(1-2a)x+1-lnx,分类讨论:当a∈(0,2)时,函数y=F(x)单调递增,从而可得F(x)min≥F(1)=1-a≥0,可得a∈(0,1]时成立;当a∈[-1,0)且a≠-
1
2
时,(x+a)F(x)≥0成立;当-2<a<-1时,(x+a)F(x)≥0等价于
-a<x≤2
F(x)≥0
1≤x≤-a
F(x)≤0
,此时不成立,故可求存在符合条件的a的取值的集合.
解答:解:(I) 由已知,∵f(x)=ax2+bx+1,g(x)=ln(ex),
∴函数F(x)=f(x)-g(x)=ax2+bx+1-ln(ex)
∴F′(x)=
2ax2+bx-1
x
(x>0)

∵F(x)=f(x)-g(x)在x=1处取得极值
∴F′(1)=0,∴b=1-2a,
∴F′(x)=
2a(x+
1
2a
)(x-1)
x

∴-
1
2a
≠1,∴a≠-
1
2

(II)由题意得:方程kx=ax2+(1-2a)x+1在x∈[1,2]时总有解,
∴k=
ax2+(1-2a)x+1
x
,即k=ax+
1
x
+1-2a,
∵当a<0时,k=ax+
1
x
+1-2a在x∈[1,2]时单调递减,∴k≥
3
2

当0<a<
1
4
时,由k′=a-
1
x2
<0
,k=ax+
1
x
+1-2a在x∈[1,2]时单调递减,∴k≥
3
2

1
4
≤a≤1时,由ax+
1
x
+1-2a≥2
a
+1-2a(当且仅当x=
1
a
时,取“=”)得k≥2
a
+1-2a,
当a>1时,k=ax+
1
x
+1-2a在x∈[1,2]时单调递增,∴k≥2-a.
∴要使得直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点
实数k应取
3
2
(a<0)、2
a
+1-2a(
1
4
≤a≤1),2-a(a>1)三者中的最大值,
∵2
a
+1-2a=-2(
a
-
1
2
)
2
+
3
2
3
2
1
4
≤a≤1),又2-a<1(a>1),
∴k的最小值为
3
2

(III)∵F(x)=ax2+(1-2a)x+1-lnx,
当a∈(0,2)时,∵x∈[1,2],∴由(x+a)F(x)≥0得F(x)≥0,
∵F′(x)=
2a(x+
1
2a
)(x-1)
x

∴x∈[1,2]时,F′(x)>0,函数y=F(x)单调递增,∴F(x)min≥F(1)=1-a≥0,
∴a∈(0,1]时成立.…(13分)
当a∈[-1,0)且a≠-
1
2
时,∵F(1)=1-a≥0,F(2)=2-ln2≥0,类似地由单调性证得F(x)≥0,
又x+a≥0,∴(x+a)F(x)≥0成立,
当-2<a<-1时,(x+a)F(x)≥0等价于
-a<x≤2
F(x)≥0
1≤x≤-a
F(x)≤0

由上可知,此时不成立.
综上,存在符合条件的a,其所有值的集合为[-1,-
1
2
∪(-
1
2
,0)∪(0,1]
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查恒成立问题,正确求导,确定函数的单调性是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网