题目内容

在△ABC中,如果A=60°,c=4,a=4,则此三角形有(  )
A、一解B、无穷多解C、两解D、无解
分析:首先利用正弦定理得出角C的度数,然后根据条件和三角形的内角和得出结论.
解答:解:根据正弦定理得,
a
sinA
=
c
sinC

∴sinC=
c•sinA
a
=
3
2
4
=
3
2

∵C∈(0,180°)
∴∠C=60°或120°
∵c=4,a=4∠A+∠B+∠C=180°
∴∠C=60°
∴在△ABC中,如果A=60°,c=4,a=4,则此三角形有一解
故选A.
点评:本题考查了正弦定理,解题过程中尤其要注意三角形的内角和的运用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网